Technique for stabilization of autogenous cancellous bone grafts in sinus lift procedures

David M. Momtaheni, DMD, Kenneth Schweitzer, DDS, and Frederick Muenchinger, DDS, New York and Bronx, N.Y. and Tampa, Fla.
COLUMBIA UNIVERSITY SCHOOL OF DENTAL AND ORAL SURGERY, ALBERT EINSTEIN COLLEGE OF MEDICINE, AND MONTEFIORE MEDICAL CENTER

Densely packed autogenous cancellous bone was stabilized in a sinus lift procedure with cortical cancellous struts. These struts were placed above the cancellous bone and rigidly fixed to the buttress and anterior sinus wall with titanium screws. This technique enables the clinician to maintain and stabilize bone graft materials in sinus lift procedures. (ORAL SURG ORAL MED ORAL PATHOL 1994;78:14-6)

One of the most challenging aspects of dental implant rehabilitation is the reconstruction of the atrophic maxilla. Atrophy confined to the alveolar region can be localized or generalized.

When atrophy is confined to the anterior region, the situation can be addressed by alveolar ridge augmentation and implant restoration. However, in the case of posterior maxillary atrophy, the condition is commonly complicated by maxillary sinus pneumatization. In selected cases, the most effective way to address the problem is maxillary antroplasty (sinus lift procedure). The procedure is well known, but there are shortcomings in the described techniques with respect to the stabilization of the bone graft. This article describes a technique to immobilize the autologous bone graft within the sinus. Incision modifications for entering the maxillary sinus necessary for application of bone graft stabilization are also presented.

TECHNIQUE

An incision is placed superiorly and posteriorly in the maxillary mucobuccal fold creating two separate layers, mucosal-submucosal and muscular-periosteal.

Fig. 1. Sinus entry at buttress area to provide solid foundation for fixation screw.

Fig. 2. Cancellous bone is rigidly stabilized with titanium screw.
A 10 × 5 mm bony window is created posteriorly and superiorly with a bur. The bone in the window area and the associated Schneiderian membrane are removed (Fig. 1).

Simultaneous bone harvest is performed from the anterior ilium. Using a reciprocating saw, a 3 × 5 cm corticocancellous block is removed from the medial table. An additional 20 cc of cancellous bone is harvested. The corticocancellous portion of the graft is split to create two 3 × 1 cm bone struts for graft stabilization. The cancellous bone is compressed in a syringe and packed into the floor of the sinus. The two corticocancellous struts are then placed in cross fashion superior to the cancellous bone. Two titanium screws are used to fix the cross struts to the buttress and anterior sinus wall (Figs. 2 and 3). Additional bone is then packed around the sinus entry window, and the wound is closed in two layers.

Implants are placed after a 4-month healing period with the use of conventional methods of implant insertion.

RESULTS
A total of five antroplastics have been performed with the use of this technique. Fifteen screw types titanium implants have been inserted into the grafted areas. Two implants were lost in two separate cases. These losses did not compromise the overall prosthetic rehabilitation.

DISCUSSION
In sinus lift procedures, the literature suggests stabilization of bone graft material by using “a trap door” anterior sinus wall or by lifting the Schneiderian membrane and packing the bone graft. Both techniques are impractical because the trap door is incapable of holding the corticocancellous graft material in the sinus. The sinus wall is too thin, too small, and, most of all, too unstable to provide support for the bone graft. Similarly, healthy Schneiderian membrane is too thin and fragile to lift in an intact manner and therefore to provide roofing for the bone graft material. On the other hand, stabilizing the cancellous bone with corticocancellous struts will provide adequate support for the graft material. These struts can be easily placed by screw fixation or a combination of screw and titanium wire fixation.

CONCLUSION
On the basis of extensive literature support as well as our experience, stabilization of grafted bone material is an essential part of the technique of bone grafting. This crucial element has been inadequately addressed in the sinus lift procedure. This technique will enable clinicians to provide bone stabilization during sinus bone graft augmentation procedures. Further study in the use of rigid fixation for maxillary antroplasty with bone graft augmentation is indicated.
REFERENCES


Reprint requests:
David M. Momtaheni, DMD
Rockefeller Center
630 Fifth Avenue, Suite 1868
New York, NY 10020